{ "id": "hep-th/9211141", "version": "v1", "published": "1992-12-01T01:21:00.000Z", "updated": "1992-12-01T01:21:00.000Z", "title": "Level-Spacing Distributions and the Airy Kernel", "authors": [ "Craig A. Tracy", "Harold Widom" ], "comment": "35 pages, LaTeX document using REVTEX macros", "journal": "Commun.Math.Phys. 159 (1994) 151-174", "doi": "10.1007/BF02100489", "categories": [ "hep-th", "cond-mat", "math-ph", "math.MP", "nlin.SI", "solv-int" ], "abstract": "Scaling level-spacing distribution functions in the ``bulk of the spectrum'' in random matrix models of $N\\times N$ hermitian matrices and then going to the limit $N\\to\\infty$, leads to the Fredholm determinant of the sine kernel $\\sin\\pi(x-y)/\\pi (x-y)$. Similarly a scaling limit at the ``edge of the spectrum'' leads to the Airy kernel $[{\\rm Ai}(x) {\\rm Ai}'(y) -{\\rm Ai}'(x) {\\rm Ai}(y)]/(x-y)$. In this paper we derive analogues for this Airy kernel of the following properties of the sine kernel: the completely integrable system of P.D.E.'s found by Jimbo, Miwa, M{\\^o}ri and Sato; the expression, in the case of a single interval, of the Fredholm determinant in terms of a Painlev{\\'e} transcendent; the existence of a commuting differential operator; and the fact that this operator can be used in the derivation of asymptotics, for general $n$, of the probability that an interval contains precisely $n$ eigenvalues.", "revisions": [ { "version": "v1", "updated": "1992-12-01T01:21:00.000Z" } ], "analyses": { "keywords": [ "airy kernel", "fredholm determinant", "sine kernel", "random matrix models", "interval contains" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "RevTeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "inspire": 33739 } } }