{ "id": "hep-th/9210117", "version": "v1", "published": "1992-10-21T21:40:25.000Z", "updated": "1992-10-21T21:40:25.000Z", "title": "On the KP Hierarchy, $\\hat{W}_{\\infty}$ Algebra, and Conformal SL(2,R)/U(1) Model: I. The Classical Case", "authors": [ "Feng Yu", "Yong-Shi Wu" ], "comment": "29p", "journal": "J.Math.Phys. 34 (1993) 5851-5871", "doi": "10.1063/1.530286", "categories": [ "hep-th" ], "abstract": "In this paper we study the inter-relationship between the integrable KP hierarchy, nonlinear $\\hat{W}_{\\infty}$ algebra and conformal noncompact $SL(2,R)/U(1)$ coset model at the classical level. We first derive explicitly the Possion brackets of the second Hamiltonian structure of the KP hierarchy, then use it to define the $\\hat{W}_{1+\\infty}$ algebra and its reduction $\\hat{W}_{\\infty}$. Then we show that the latter is realized in the $SL(2,R)/U(1)$ coset model as a hidden current algebra, through a free field realization of $\\hat{W}_{\\infty}$, in closed form for all higher-spin currents, in terms of two bosons. An immediate consequence is the existence of an infinite number of KP flows in the coset model, which preserve the $\\hat{W}_{\\infty}$ current algebra.", "revisions": [ { "version": "v1", "updated": "1992-10-21T21:40:25.000Z" } ], "analyses": { "keywords": [ "conformal sl", "classical case", "coset model", "free field realization", "hidden current algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "J. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 339392 } } }