{ "id": "hep-th/0312129", "version": "v1", "published": "2003-12-12T10:32:27.000Z", "updated": "2003-12-12T10:32:27.000Z", "title": "The induced representation of the isometry group of the Euclidean Taub-NUT space and new spherical harmonics", "authors": [ "Ion I. Cotaescu", "Mihai Visinescu" ], "comment": "16 pages, no figures, LaTeX2e", "journal": "Mod.Phys.Lett. A19 (2004) 1397-1410", "doi": "10.1142/S0217732304013672", "categories": [ "hep-th", "gr-qc", "math-ph", "math.MP" ], "abstract": "It is shown that the SO(3) isometries of the Euclidean Taub-NUT space combine a linear three-dimensional representation with one induced by a SO(2) subgroup, giving the transformation law of the fourth coordinate under rotations. This explains the special form of the angular momentum operator on this manifold which leads to a new type of spherical harmonics and spinors.", "revisions": [ { "version": "v1", "updated": "2003-12-12T10:32:27.000Z" } ], "analyses": { "keywords": [ "euclidean taub-nut space", "spherical harmonics", "isometry group", "induced representation", "angular momentum operator" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "inspire": 635465 } } }