{ "id": "hep-ph/9409289", "version": "v1", "published": "1994-09-13T07:35:29.000Z", "updated": "1994-09-13T07:35:29.000Z", "title": "FORTRAN program for a numerical solution of the nonsinglet Altarelli-Parisi equation", "authors": [ "R. Kobayashi", "M. Konuma", "S. Kumano" ], "comment": "LATEX 21 pages (Figs. 1 and 2 are available upon request), SAGA-HE-63-94", "journal": "Comput.Phys.Commun. 86 (1995) 264-278", "doi": "10.1016/0010-4655(94)00159-Y", "categories": [ "hep-ph", "nucl-th" ], "abstract": "We investigate a numerical solution of the flavor-nonsinglet Altarelli-Parisi equation with next-to-leading-order $\\alpha_s$ corrections by using Laguerre polynomials. Expanding a structure function (or a quark distribution) and a splitting function by the Laguerre polynomials, we reduce an integrodifferential equation to a summation of finite number of Laguerre coefficients. We provide a FORTRAN program for Q$^2$ evolution of nonsinglet structure functions (F$_1$, F$_2$, and F$_3$) and nonsinglet quark distributions. This is a very effective program with typical running time of a few seconds on SUN-IPX or on VAX-4000/500. Accurate evolution results are obtained by taking approximately twenty Laguerre polynomials.", "revisions": [ { "version": "v1", "updated": "1994-09-13T07:35:29.000Z" } ], "analyses": { "keywords": [ "fortran program", "numerical solution", "laguerre polynomials", "flavor-nonsinglet altarelli-parisi equation", "nonsinglet structure functions" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Comput. Phys. Commun." }, "note": { "typesetting": "LaTeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "inspire": 376835 } } }