{ "id": "2501.03003", "version": "v1", "published": "2025-01-06T13:26:37.000Z", "updated": "2025-01-06T13:26:37.000Z", "title": "Irredundant bases for soluble groups", "authors": [ "Sofia Brenner", "Coen del Valle", "Colva M. Roney-Dougal" ], "categories": [ "math.GR" ], "abstract": "Let $\\Delta$ be a finite set and $G$ be a subgroup of $\\operatorname{Sym}(\\Delta)$. An irredundant base for $G$ is a sequence of points of $\\Delta$ yielding a strictly descending chain of pointwise stabilisers, terminating with the trivial group. Suppose that $G$ is primitive and soluble. We determine asymptotically tight bounds for the maximum length of an irredundant base for $G$. Moreover, we disprove a conjecture of Seress on the maximum length of an irredundant base constructed by the natural greedy algorithm, and prove Cameron's Greedy Conjecture for $|G|$ odd.", "revisions": [ { "version": "v1", "updated": "2025-01-06T13:26:37.000Z" } ], "analyses": { "subjects": [ "20B15", "20D10", "20E15" ], "keywords": [ "irredundant base", "soluble groups", "maximum length", "camerons greedy conjecture", "natural greedy algorithm" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }