{ "id": "2411.13539", "version": "v1", "published": "2024-11-20T18:42:15.000Z", "updated": "2024-11-20T18:42:15.000Z", "title": "When the Gromov-Hausdorff distance between finite-dimensional space and its subset is finite?", "authors": [ "I. N. Mikhailov", "A. A. Tuzhilin" ], "comment": "6 pages, accepted for publication in Commun. Math. Res. (http://www.global-sci.org/intro/online.html?journal=cmr)", "categories": [ "math.MG" ], "abstract": "In this paper we prove that the Gromov--Hausdorff distance between $\\mathbb{R}^n$ and its subset $A$ is finite if and only if $A$ is an $\\varepsilon$-net in $\\mathbb{R}^n$ for some $\\varepsilon>0$. For infinite-dimensional Euclidean spaces this is not true. The proof is essentially based on upper estimate of the Euclidean Gromov--Hausdorff distance by means of the Gromov-Hausdorff distance.", "revisions": [ { "version": "v1", "updated": "2024-11-20T18:42:15.000Z" } ], "analyses": { "subjects": [ "46B20", "51F99" ], "keywords": [ "finite-dimensional space", "euclidean gromov-hausdorff distance", "infinite-dimensional euclidean spaces", "upper estimate" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }