{ "id": "2408.14139", "version": "v1", "published": "2024-08-26T09:36:46.000Z", "updated": "2024-08-26T09:36:46.000Z", "title": "Greedy base sizes for sporadic simple groups", "authors": [ "Coen del Valle" ], "comment": "9 pages, 3 tables", "categories": [ "math.GR" ], "abstract": "A base for a permutation group $G$ acting on a set $\\Omega$ is a sequence $\\mathcal{B}$ of points of $\\Omega$ such that the pointwise stabiliser $G_{\\mathcal{B}}$ is trivial. Denote the minimum size of a base for $G$ by $b(G)$. There is a natural greedy algorithm for constructing a base of relatively small size; denote by $\\mathcal{G}(G)$ the maximum size of a base it produces. Motivated by a long-standing conjecture of Cameron, we determine $\\mathcal{G}(G)$ for every almost simple primitive group $G$ with socle a sporadic simple group, showing that $\\mathcal{G}(G)=b(G)$.", "revisions": [ { "version": "v1", "updated": "2024-08-26T09:36:46.000Z" } ], "analyses": { "keywords": [ "sporadic simple group", "greedy base sizes", "natural greedy algorithm", "permutation group", "simple primitive group" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }