{ "id": "2408.01643", "version": "v1", "published": "2024-08-03T03:00:52.000Z", "updated": "2024-08-03T03:00:52.000Z", "title": "Comparing Hecke eigenvalues for pairs of automorphic representations for GL(2)", "authors": [ "Kin Ming Tsang" ], "categories": [ "math.NT" ], "abstract": "We consider a variant of the strong multiplicity one theorem. Let $\\pi_{1}$ and $\\pi_{2}$ be two unitary cuspidal automorphic representations for $\\mathrm{GL(2)}$ that are not twist-equivalent. We find a lower bound for the lower Dirichlet density of the set of places for which $\\left\\lvert a_{v}(\\pi_{1}) \\right\\rvert > \\left\\lvert a_{v}(\\pi_{2}) \\right\\rvert$, where $a_{v}(\\pi_{i})$ is the trace of Langlands conjugacy class of $\\pi_{i}$ at $v$. One consequence of this result is an improvement on the existing bound on the lower Dirichlet density of the set of places for which $\\left\\lvert a_{v}(\\pi_{1})\\right\\rvert \\neq \\left\\lvert a_{v}(\\pi_{2}) \\right\\rvert$.", "revisions": [ { "version": "v1", "updated": "2024-08-03T03:00:52.000Z" } ], "analyses": { "subjects": [ "11F30", "11F41" ], "keywords": [ "hecke eigenvalues", "lower dirichlet density", "unitary cuspidal automorphic representations", "langlands conjugacy class", "lower bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }