{ "id": "2407.14511", "version": "v1", "published": "2024-06-18T17:38:20.000Z", "updated": "2024-06-18T17:38:20.000Z", "title": "Counting subgroups of the groups ${\\Bbb Z}_{n_1} \\times \\cdots \\times {\\Bbb Z}_{n_k}$: a survey", "authors": [ "László Tóth" ], "comment": "book chapter. arXiv admin note: text overlap with arXiv:1611.03302", "journal": "New Frontiers in Number Theory and Applications, Trends in Mathematics, Birkh\\\"auser, Cham, 2024, Gu\\`ardia, J., Minculete, N., Savin, D., Vela, M.,Zekhnini, A. (eds), pp. 385-409", "doi": "10.1007/978-3-031-51959-8_18", "categories": [ "math.GR", "math.NT" ], "abstract": "We present a survey of exact and asymptotic formulas on the number of cyclic subgroups and total number of subgroups of the groups ${\\Bbb Z}_{n_1} \\times \\cdots \\times {\\Bbb Z}_{n_k}$, where $k\\ge 2$ and $n_1,\\ldots,n_k$ are arbitrary positive integers.", "revisions": [ { "version": "v1", "updated": "2024-06-18T17:38:20.000Z" } ], "analyses": { "subjects": [ "20K01", "20K27", "05A15", "11A25" ], "keywords": [ "counting subgroups", "arbitrary positive integers", "total number", "asymptotic formulas" ], "tags": [ "book chapter", "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }