{ "id": "2407.01028", "version": "v1", "published": "2024-07-01T07:24:05.000Z", "updated": "2024-07-01T07:24:05.000Z", "title": "An Integral representation of $\\mathop{\\mathcal R}(s)$ due to Gabcke", "authors": [ "Juan Arias de Reyna" ], "comment": "5 pages 2 figures", "categories": [ "math.NT" ], "abstract": "Gabcke proved a new integral expression for the auxiliary Riemann function \\[\\mathop{\\mathcal R}(s)=2^{s/2}\\pi^{s/2}e^{\\pi i(s-1)/4}\\int_{-\\frac12\\searrow\\frac12} \\frac{e^{-\\pi i u^2/2+\\pi i u}}{2i\\cos\\pi u}U(s-\\tfrac12,\\sqrt{2\\pi}e^{\\pi i/4}u)\\,du,\\] where $U(\\nu,z)$ is the usual parabolic cylinder function. We give a new, shorter proof, which avoids the use of the Mordell integral. And we write it in the form \\begin{equation}\\mathop{\\mathcal R}(s)=-2^s \\pi^{s/2}e^{\\pi i s/4}\\int_{-\\infty}^\\infty \\frac{e^{-\\pi x^2}H_{-s}(x\\sqrt{\\pi})}{1+e^{-2\\pi\\omega x}}\\,dx.\\end{equation} where $H_\\nu(z)$ is the generalized Hermite polynomial.", "revisions": [ { "version": "v1", "updated": "2024-07-01T07:24:05.000Z" } ], "analyses": { "subjects": [ "11M06", "30D99" ], "keywords": [ "integral representation", "usual parabolic cylinder function", "auxiliary riemann function", "mordell integral", "shorter proof" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }