{ "id": "2406.14987", "version": "v1", "published": "2024-06-21T08:59:54.000Z", "updated": "2024-06-21T08:59:54.000Z", "title": "Density theorems for Riemann's auxiliary function", "authors": [ "Juan Arias de Reyna" ], "comment": "14 pages, 4 figures", "categories": [ "math.NT" ], "abstract": "We prove a density theorem for the auxiliar function $\\mathop{\\mathcal R}(s)$ found by Siegel in Riemann papers. Let $\\alpha$ be a real number with $\\frac12< \\alpha\\le 1$, and let $N(\\alpha,T)$ be the number of zeros $\\rho=\\beta+i\\gamma$ of $\\mathop{\\mathcal R}(s)$ with $1\\ge \\beta\\ge\\alpha$ and $0<\\gamma\\le T$. Then we prove \\[N(\\alpha,T)\\ll T^{\\frac32-\\alpha}(\\log T)^3.\\] Therefore, most of the zeros of $\\mathop{\\mathcal R}(s)$ are near the critical line or to the left of that line. The imaginary line for $\\pi^{-s/2}\\Gamma(s/2)\\mathop{\\mathcal R}(s)$ passing through a zero of $\\mathop{\\mathcal R}(s)$ near the critical line frequently will cut the critical line, producing two zeros of $\\zeta(s)$ in the critical line.", "revisions": [ { "version": "v1", "updated": "2024-06-21T08:59:54.000Z" } ], "analyses": { "subjects": [ "11M06", "30D99" ], "keywords": [ "riemanns auxiliary function", "density theorem", "critical line", "auxiliar function", "imaginary line" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }