{ "id": "2404.07384", "version": "v1", "published": "2024-04-10T23:04:45.000Z", "updated": "2024-04-10T23:04:45.000Z", "title": "A~Moebius invariant space of $H$-harmonic functions on the ball", "authors": [ "Petr Blaschke", "Miroslav Engliš", "El-Hassan Youssfi" ], "comment": "25 pages, no figures", "categories": [ "math.CV", "math.FA" ], "abstract": "We~describe a Dirichlet-type space of $H$-harmonic functions, i.e. functions annihilated by the hyperbolic Laplacian on~the unit ball of the real $n$-space, as~the analytic continuation (in~the spirit of Rossi and Vergne) of the corresponding weighted Bergman spaces. Characterizations in terms of derivatives are given, and the associated semi-inner product is shown to be Moebius invariant. We~also give a formula for the corresponding reproducing kernel. Our~results solve an open problem addressed by M.~Stoll in his book ``Harmonic and subharmonic function theory on the hyperbolic ball'' (Cambridge University Press, 2016).", "revisions": [ { "version": "v1", "updated": "2024-04-10T23:04:45.000Z" } ], "analyses": { "subjects": [ "31C05", "33C55", "32A36" ], "keywords": [ "harmonic functions", "invariant space", "subharmonic function theory", "cambridge university press", "moebius invariant" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }