{ "id": "2403.06346", "version": "v1", "published": "2024-03-11T00:18:53.000Z", "updated": "2024-03-11T00:18:53.000Z", "title": "On the rational invariants of quantum systems of $n$-qubits", "authors": [ "Luca Candelori", "Vladimir Y. Chernyak", "John R. Klein" ], "categories": [ "math-ph", "math.MP", "math.QA", "math.RA", "math.RT", "quant-ph" ], "abstract": "For an $n$-qubit system, a rational function on the space of mixed states which is invariant with respect to the action of the group of local symmetries may be viewed as a detailed measure of entanglement. We show that the field of all such invariant rational functions is purely transcendental over the complex numbers and has transcendence degree $4^n - 2n-1$. An explicit transcendence basis is also exhibited.", "revisions": [ { "version": "v1", "updated": "2024-03-11T00:18:53.000Z" } ], "analyses": { "subjects": [ "81P40", "81P42", "13A50", "14L24" ], "keywords": [ "quantum systems", "rational invariants", "invariant rational functions", "explicit transcendence basis", "complex numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }