{ "id": "2401.06434", "version": "v1", "published": "2024-01-12T07:58:02.000Z", "updated": "2024-01-12T07:58:02.000Z", "title": "On Fractional Orlicz-Hardy Inequalities", "authors": [ "T. V. Anoop", "Prosenjit Roy", "Subhajit Roy" ], "comment": "24 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "We establish the weighted fractional Orlicz-Hardy inequalities for various Orlicz functions. Further, we identify the critical cases for each Orlicz function and prove the weighted fractional Orlicz-Hardy inequalities with logarithmic correction. Moreover, we discuss the analogous results in the local case. In the process, for any Orlicz function $\\Phi$ and for any $\\Lambda>1$, the following inequality is established $$ \\Phi(a+b)\\leq \\lambda\\Phi(a)+\\frac{C( \\Phi, \\Lambda )}{(\\lambda-1)^{p_\\Phi^+-1}}\\Phi(b),\\;\\;\\;\\forall\\,a,b\\in [0,\\infty),\\,\\forall\\,\\lambda\\in (1,\\Lambda], $$ where $p_\\Phi^+:=\\sup\\big\\{t\\varphi(t)/\\Phi(t):t>0\\big\\},$ $\\varphi$ is the right derivatives of $\\Phi$ and $C( \\Phi, \\Lambda )$ is a positive constant that depends only on $\\Phi$ and $\\Lambda.$", "revisions": [ { "version": "v1", "updated": "2024-01-12T07:58:02.000Z" } ], "analyses": { "subjects": [ "46E30", "35R11", "35A23" ], "keywords": [ "inequality", "weighted fractional orlicz-hardy inequalities", "orlicz function", "logarithmic correction", "right derivatives" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }