{ "id": "2312.12199", "version": "v1", "published": "2023-12-19T14:35:31.000Z", "updated": "2023-12-19T14:35:31.000Z", "title": "On derivatives of zeta and $L$-functions near the 1-line", "authors": [ "Zikang Dong", "Yutong Song", "Weijia Wang", "Hao Zhang" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "We study the conditional upper bounds and extreme values of derivatives of the Riemann zeta function and Dirichlet $L$-functions near the 1-line. Let $\\ell$ be a fixed natural number. We show that, if $|\\sigma-1|\\ll1/\\log_2t$, then $|\\zeta^{(\\ell)}(\\sigma+ i t)|$ has the same maximal order (up to the leading coefficients) as $|\\zeta^{(\\ell)}(1+ i t)|$ when $t\\to\\infty$. Similar results can be obtained for Dirichlet $L$-functions $L^{(\\ell)}(\\sigma,\\chi)$ with $\\chi\\pmod q$.", "revisions": [ { "version": "v1", "updated": "2023-12-19T14:35:31.000Z" } ], "analyses": { "keywords": [ "derivatives", "conditional upper bounds", "riemann zeta function", "fixed natural number", "extreme values" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }