{ "id": "2312.01806", "version": "v1", "published": "2023-12-04T11:13:35.000Z", "updated": "2023-12-04T11:13:35.000Z", "title": "Partition function zeros of zeta-urns", "authors": [ "Piotr Bialas", "Zdzislaw Burda", "Desmond A. Johnston" ], "categories": [ "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "We discuss the distribution of partition function zeros for the grand-canonical ensemble of the zeta-urn model, where tuning a single parameter can give a first or any higher order condensation transition. We compute the locus of zeros for finite-size systems and test scaling relations describing the accumulation of zeros near the critical point against theoretical predictions for both the first and higher order transition regimes.", "revisions": [ { "version": "v1", "updated": "2023-12-04T11:13:35.000Z" } ], "analyses": { "keywords": [ "partition function zeros", "higher order condensation transition", "higher order transition regimes", "single parameter", "test scaling relations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }