{ "id": "2311.06591", "version": "v1", "published": "2023-11-11T15:15:48.000Z", "updated": "2023-11-11T15:15:48.000Z", "title": "On Ramanujan's cubic continued fraction", "authors": [ "Sushmanth J. Akkarapakam", "Patrick Morton" ], "comment": "40 pages, 1 Table", "categories": [ "math.NT" ], "abstract": "The periodic points of the algebraic function defined by the equation $g(x,y) = x^3(4y^2+2y+1)-y(y^2-y+1)$ are shown to be expressible in terms of Ramanujan's cubic continued fraction $c(\\tau)$ with arguments in an imaginary quadratic field in which the prime $3$ splits. If $w = (a+\\sqrt{-d})/2$ lies in an order of conductor $f$ in $K$ and $9 \\mid N_{K/\\mathbb{Q}}(w)$, then one of these periodic points is $c(w/3)$, which is shown to generate the ring class field of conductor $2f$ over $K$.", "revisions": [ { "version": "v1", "updated": "2023-11-11T15:15:48.000Z" } ], "analyses": { "keywords": [ "ramanujans cubic continued fraction", "periodic points", "imaginary quadratic field", "ring class field", "algebraic function" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }