{ "id": "2311.02387", "version": "v1", "published": "2023-11-04T12:04:00.000Z", "updated": "2023-11-04T12:04:00.000Z", "title": "A note on a Conjecture of Gao and Zhuang for groups of order $27$", "authors": [ "Naveen K. Godara", "Siddhartha Sarkar" ], "categories": [ "math.GR" ], "abstract": "The small Davenport constant ${\\mathsf{d}}(G)$ is defined to be the maximal length of a product-one free non-trivial sequence in a finite group $G$. In this paper, we prove that ${\\mathsf{d}}(G) = 6$ for the non-abelian group of order $27$ and exponent $3$ and thereby establish a conjecture by Gao and Zhuang for this group.", "revisions": [ { "version": "v1", "updated": "2023-11-04T12:04:00.000Z" } ], "analyses": { "subjects": [ "20D60", "11B75" ], "keywords": [ "conjecture", "product-one free non-trivial sequence", "small davenport constant", "finite group", "maximal length" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }