{ "id": "2309.16860", "version": "v1", "published": "2023-09-28T21:21:49.000Z", "updated": "2023-09-28T21:21:49.000Z", "title": "Hyperbolicity in non-metric cubical small-cancellation", "authors": [ "Macarena Arenas", "Kasia Jankiewicz", "Daniel T. Wise" ], "comment": "19 pages, 7 figures", "categories": [ "math.GR" ], "abstract": "Given a non-positively curved cube complex $X$, we prove that the quotient of $\\pi_1X$ defined by a cubical presentation $\\langle X\\mid Y_1,\\dots, Y_s\\rangle$ satisfying sufficient non-metric cubical small-cancellation conditions is hyperbolic provided that $\\pi_1X$ is hyperbolic. This generalises the fact that finitely presented classical $C(7)$ small-cancellation groups are hyperbolic.", "revisions": [ { "version": "v1", "updated": "2023-09-28T21:21:49.000Z" } ], "analyses": { "subjects": [ "20F06", "20F67", "20F65" ], "keywords": [ "sufficient non-metric cubical small-cancellation conditions", "hyperbolicity", "satisfying sufficient non-metric cubical small-cancellation", "non-positively curved cube complex", "small-cancellation groups" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }