{ "id": "2309.15586", "version": "v1", "published": "2023-09-27T11:41:52.000Z", "updated": "2023-09-27T11:41:52.000Z", "title": "Orthogonal irreducible representations of finite solvable groups in odd dimension", "authors": [ "Mikko Korhonen" ], "comment": "to appear in Bull. Lond. Math. Soc", "categories": [ "math.GR", "math.RT" ], "abstract": "We prove that if $G$ is a finite irreducible solvable subgroup of an orthogonal group $O(V,Q)$ with $\\dim V$ odd, then $G$ preserves an orthogonal decomposition of $V$ into $1$-spaces. In particular $G$ is monomial. This generalizes a theorem of Rod Gow.", "revisions": [ { "version": "v1", "updated": "2023-09-27T11:41:52.000Z" } ], "analyses": { "subjects": [ "20H20", "20C99" ], "keywords": [ "finite solvable groups", "orthogonal irreducible representations", "odd dimension", "finite irreducible solvable subgroup", "orthogonal group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }