{ "id": "2309.03794", "version": "v1", "published": "2023-09-07T15:44:37.000Z", "updated": "2023-09-07T15:44:37.000Z", "title": "Finitely presented kernels of homomorphisms from hyperbolic groups onto free abelian groups", "authors": [ "Robert Kropholler", "Claudio Llosa Isenrich" ], "comment": "15 pages", "categories": [ "math.GR" ], "abstract": "For every $m\\geq 2$ we produce an example of a non-hyperbolic finitely presented subgroup $H < G$ of a hyperbolic group $G$, which is the kernel of a surjective homomorphism $\\phi: G\\to \\mathbb{Z}^m$. The examples we produce are of finiteness type $F_2$ and not $F_3$.", "revisions": [ { "version": "v1", "updated": "2023-09-07T15:44:37.000Z" } ], "analyses": { "subjects": [ "20F67", "20F65", "20J05", "20F05", "57M07" ], "keywords": [ "free abelian groups", "hyperbolic group", "finiteness type", "surjective homomorphism" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }