{ "id": "2306.00990", "version": "v1", "published": "2023-06-01T17:59:59.000Z", "updated": "2023-06-01T17:59:59.000Z", "title": "Finite Entanglement Entropy in String Theory", "authors": [ "Atish Dabholkar", "Upamanyu Moitra" ], "comment": "6 pages; two-column format", "categories": [ "hep-th", "gr-qc", "math-ph", "math.MP", "quant-ph" ], "abstract": "We analyze the one-loop quantum entanglement entropy in ten-dimensional Type-II string theory using the orbifold method by analytically continuing in $N$ the genus-one partition function for string orbifolds on $\\mathbb{R}^2/\\mathbb{Z}_N$ conical spaces known for all odd integers $N > 1$. We show that the tachyonic contributions to the orbifold partition function can be appropriately summed and analytically continued to an expression that is finite in the physical region $0 < N \\leq 1$ resulting in a finite and calculable answer for the entanglement entropy. We discuss the implications of the finiteness of the entanglement entropy for the information paradox, quantum gravity, and holography.", "revisions": [ { "version": "v1", "updated": "2023-06-01T17:59:59.000Z" } ], "analyses": { "keywords": [ "finite entanglement entropy", "one-loop quantum entanglement entropy", "orbifold partition function", "genus-one partition function", "ten-dimensional type-ii string theory" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }