{ "id": "2305.05071", "version": "v1", "published": "2023-05-08T22:20:09.000Z", "updated": "2023-05-08T22:20:09.000Z", "title": "Rational lines on diagonal hypersurfaces and subconvexity via the circle method", "authors": [ "Trevor D. Wooley" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "Fix $k,s,n\\in \\mathbb N$, and consider non-zero integers $c_1,\\ldots ,c_s$, not all of the same sign. Provided that $s\\ge k(k+1)$, we establish a Hasse principle for the existence of lines having integral coordinates lying on the affine diagonal hypersurface defined by the equation $c_1x_1^k+\\ldots +c_sx_s^k=n$. This conclusion surmounts the conventional convexity barrier tantamount to the square-root cancellation limit for this problem.", "revisions": [ { "version": "v1", "updated": "2023-05-08T22:20:09.000Z" } ], "analyses": { "subjects": [ "11D45", "11D72", "11P55" ], "keywords": [ "circle method", "rational lines", "subconvexity", "conventional convexity barrier tantamount", "square-root cancellation limit" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }