{ "id": "2303.14600", "version": "v1", "published": "2023-03-26T01:29:16.000Z", "updated": "2023-03-26T01:29:16.000Z", "title": "Distribution in coprime residue classes of polynomially-defined multiplicative functions", "authors": [ "Paul Pollack", "Akash Singha Roy" ], "comment": "post-publication version; proof of absolute irreducibility in section 6 corrected", "journal": "Math. Z. 303, article number 93 (2023)", "doi": "10.1007/s00209-023-03240-7", "categories": [ "math.NT" ], "abstract": "An integer-valued multiplicative function $f$ is said to be polynomially-defined if there is a nonconstant separable polynomial $F(T)\\in \\mathbb{Z}[T]$ with $f(p)=F(p)$ for all primes $p$. We study the distribution in coprime residue classes of polynomially-defined multiplicative functions, establishing equidistribution results allowing a wide range of uniformity in the modulus $q$. For example, we show that the values $\\phi(n)$, sampled over integers $n \\le x$ with $\\phi(n)$ coprime to $q$, are asymptotically equidistributed among the coprime classes modulo $q$, uniformly for moduli $q$ coprime to $6$ that are bounded by a fixed power of $\\log{x}$.", "revisions": [ { "version": "v1", "updated": "2023-03-26T01:29:16.000Z" } ], "analyses": { "subjects": [ "11A25", "11N36", "11N64" ], "keywords": [ "coprime residue classes", "polynomially-defined multiplicative functions", "coprime classes modulo", "nonconstant separable polynomial", "establishing equidistribution results" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }