{ "id": "2212.07674", "version": "v1", "published": "2022-12-15T09:18:06.000Z", "updated": "2022-12-15T09:18:06.000Z", "title": "Roots of outer automorphisms of free groups and centralizers of abelian subgroups of $\\mathrm{Out}(F_N)$", "authors": [ "Yassine Guerch" ], "comment": "18 pages", "categories": [ "math.GR", "math.GT" ], "abstract": "Let $N \\geq 2$ and let $\\mathrm{Out}(F_N)$ be the outer automorphism group of a nonabelian free group of rank $N$. Let $\\mathrm{IA}_N(\\mathbb{Z}/3\\mathbb{Z})$ be the finite index subgroup of $\\mathrm{Out}(F_N)$ which is the kernel of the natural action of $\\mathrm{Out}(F_N)$ on $H_1(F_N,\\mathbb{Z}/3\\mathbb{Z})$. We show that $\\mathrm{IA}_N(\\mathbb{Z}/3\\mathbb{Z})$ is an $R$-group, that is, for every $\\phi,\\psi \\in \\mathrm{IA}_N(\\mathbb{Z}/3\\mathbb{Z})$, if there exists $k \\in \\mathbb{N}^*$ such that $\\phi^k=\\psi^k$, then $\\phi=\\psi$. This answers a question of Handel and Mosher. We then use the fact that $\\mathrm{IA}_N(\\mathbb{Z}/3\\mathbb{Z})$ is an $R$-group in order to prove that the normalizer in $\\mathrm{IA}_N(\\mathbb{Z}/3\\mathbb{Z})$ of every abelian subgroup of $\\mathrm{IA}_N(\\mathbb{Z}/3\\mathbb{Z})$ is equal to its centralizer. We finally give an alternative proof of a result, due to Feighn and Handel, that the centralizer of an element of $\\mathrm{Out}(F_N)$ which has only finitely many periodic orbits of conjugacy classes of maximal cyclic subgroups of $F_N$ is virtually abelian.", "revisions": [ { "version": "v1", "updated": "2022-12-15T09:18:06.000Z" } ], "analyses": { "subjects": [ "20E05", "20E08", "20E36", "20F65" ], "keywords": [ "abelian subgroup", "centralizer", "outer automorphism group", "finite index subgroup", "nonabelian free group" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }