{ "id": "2211.06264", "version": "v1", "published": "2022-11-11T15:19:33.000Z", "updated": "2022-11-11T15:19:33.000Z", "title": "Zeros of Dirichlet $L$-functions near the critical line", "authors": [ "George Dickinson" ], "comment": "28 pages", "categories": [ "math.NT" ], "abstract": "We prove an upper bound on the density of zeros very close to the critical line of the family of Dirichlet $L$-functions of modulus $q$ at height $T$. To do this, we derive an asymptotic for the twisted second moment of Dirichlet $L$-functions uniformly in $q$ and $t$. As a second application of the asymptotic formula we prove that, for every integer $q$, at least $38.2\\%$ of zeros of the primitive Dirichlet $L$-functions of modulus $q$ lie on the critical line.", "revisions": [ { "version": "v1", "updated": "2022-11-11T15:19:33.000Z" } ], "analyses": { "keywords": [ "critical line", "asymptotic formula", "upper bound", "second application", "twisted second moment" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }