{ "id": "2210.17427", "version": "v1", "published": "2022-10-31T15:56:53.000Z", "updated": "2022-10-31T15:56:53.000Z", "title": "Existence and local uniqueness of multi-peak solutions for the Chern-Simons-Schrödinger system", "authors": [ "Qiaoqiao Hua", "Chunhua Wang", "Jing Yang" ], "categories": [ "math.AP" ], "abstract": "In the present paper, we consider the Chern-Simons-Schr\\\"{o}dinger system \\begin{equation} \\left\\{ \\begin{aligned} &-\\varepsilon^{2}\\Delta u+V(x)u+(A_{0}+A_{1}^{2}+A_{2}^{2})u=|u|^{p-2}u,\\,\\,\\,\\,x\\in \\mathbb{R}^2,\\\\ &\\partial_1 A_0 = A_2 u^2,\\ \\partial_{2}A_{0}=-A_{1}u^{2},\\\\ &\\partial_{1}A_{2}-\\partial_{2}A_{1}=-\\frac{1}{2}|u|^{2},\\ \\partial_{1}A_{1}+\\partial_{2}A_{2}=0,\\\\ \\end{aligned} \\right. \\end{equation} where $p>2,$ $\\varepsilon>0$ is a parameter and $V:\\mathbb{R}^{2}\\rightarrow\\mathbb{R}$ is a bounded continuous function. Under some mild assumptions on $V(x)$, we show the existence and local uniqueness of positive multi-peak solutions. Our methods mainly use the finite dimensional reduction method, various local Pohozaev identities, blow-up analysis and the maximum principle. Because of the nonlocal terms involved by $A_{0},A_{1}$ and $A_{2},$ we have to obtain a series of new and technical estimates.", "revisions": [ { "version": "v1", "updated": "2022-10-31T15:56:53.000Z" } ], "analyses": { "keywords": [ "local uniqueness", "chern-simons-schrödinger system", "finite dimensional reduction method", "local pohozaev identities", "positive multi-peak solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }