{ "id": "2210.14741", "version": "v1", "published": "2022-10-26T14:19:47.000Z", "updated": "2022-10-26T14:19:47.000Z", "title": "Legendre symbols related to certain determinants", "authors": [ "Xin-Qi Luo", "Zhi-Wei Sun" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime. For $b,c\\in\\mathbb Z$, Sun introduced the determinant $$D_p(b,c)=\\left|(i^2+bij+cj^2)^{p-2}\\right|_{1\\leqslant i,j \\leqslant p-1},$$ and investigated the Legendre symbol $(\\frac{D_p(b,c)}p)$. Recently Wu, She and Ni proved that $(\\frac{D_p(1,1)}p)=(\\frac {-2}p)$ if $p\\equiv2\\pmod 3$, which confirms a previous conjecture of Sun. In this paper we determine $(\\frac{D_p(1,1)}p)$ in the case $p\\equiv1\\pmod3$. Sun proved that $D_p(2,2)\\equiv0\\pmod p$ if $p\\equiv3\\pmod4$, in contrast we prove that $(\\frac{D_p(2,2)}p)=1$ if $p\\equiv1\\pmod8$, and $(\\frac{D_p(2,2)}p)=0$ if $p\\equiv5\\pmod8$. Our tools include generalized trinomial coefficients and Lucas sequences.", "revisions": [ { "version": "v1", "updated": "2022-10-26T14:19:47.000Z" } ], "analyses": { "subjects": [ "11C20", "11A15", "11B39", "11T99", "15A15" ], "keywords": [ "legendre symbol", "determinant", "odd prime", "generalized trinomial coefficients", "lucas sequences" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }