{ "id": "2209.05906", "version": "v1", "published": "2022-09-13T11:41:27.000Z", "updated": "2022-09-13T11:41:27.000Z", "title": "Norm estimates for the $\\bar\\partial$-equation on a non-reduced space", "authors": [ "Mats Andersson", "Richard Lärkäng" ], "comment": "28 pages", "categories": [ "math.CV" ], "abstract": "We study norm-estimates for the $\\bar\\partial$-equation on non-reduced analytic spaces. Our main result is that on a non-reduced analytic space, which is Cohen-Macaulay and whose underlying reduced space is smooth, the $\\bar\\partial$-equation for $(0,1)$-forms can be solved with $L^p$-estimates.", "revisions": [ { "version": "v1", "updated": "2022-09-13T11:41:27.000Z" } ], "analyses": { "subjects": [ "32A26", "32A27", "32B15", "32W05" ], "keywords": [ "norm estimates", "non-reduced space", "non-reduced analytic space", "study norm-estimates" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }