{ "id": "2208.14334", "version": "v1", "published": "2022-08-30T15:18:00.000Z", "updated": "2022-08-30T15:18:00.000Z", "title": "Graceful Ordering of Abelian Groups", "authors": [ "Mohammad Javaheri" ], "categories": [ "math.GR", "math.NT" ], "abstract": "Given a sequence ${\\bf g}: g_0,\\ldots, g_{m}$, in a finite group $G$ with $g_0=1_G$, let ${\\bf \\bar g}: \\bar g_0,\\ldots, \\bar g_{m}$, be the sequence defined by $\\bar g_0=1_G$ and $\\bar g_i=g_{i-1}^{-1}g_i$ for $1\\leq i \\leq m$. We prove that if $G$ is abelian then there exists a sequence ${\\bf g}$ such that each element of $G$ appears exactly twice in each of ${\\bf g}$ and ${\\bf \\bar g}$.", "revisions": [ { "version": "v1", "updated": "2022-08-30T15:18:00.000Z" } ], "analyses": { "subjects": [ "20K01", "05E15", "05B30", "20D15", "20F22" ], "keywords": [ "abelian groups", "graceful ordering", "finite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }