{ "id": "2208.13569", "version": "v1", "published": "2022-08-29T12:58:32.000Z", "updated": "2022-08-29T12:58:32.000Z", "title": "Asymptotic behaviour of the finite blow-up points solutions of the fast diffusion equation", "authors": [ "Shu-Yu Hsu" ], "comment": "23 pages", "categories": [ "math.AP" ], "abstract": "Let $n\\ge 3$, $0\\frac{n(1-m)}{2}$ which satisfies $\\lambda_i|x-a_i|^{-\\gamma_i}\\le u_0(x)\\le \\lambda_i'|x-a_i|^{-\\gamma_i'}\\,\\,\\forall 0<|x-a_i|<\\delta$, $i=1,\\dots, i_0$ where $\\delta>0$, $\\lambda_i'\\ge\\lambda_i>0$ and $\\frac{2}{1-m}<\\gamma_i\\le\\gamma_i<\\frac{n-2}{m}$ $\\forall i=1,2,\\dots, i_0$ are constants. We will prove the asymptotic behaviour of the finite blow-up points solution $u$ of $u_t=\\Delta u^m$ in $\\hat{\\Omega}\\times (0,\\infty)$, $u(a_i,t)=\\infty\\,\\,\\forall i=1,\\dots,i_0, t>0$, $u(x,0)=u_0(x)$ in $\\hat{\\Omega}$ and $u=f$ on $\\partial\\Omega\\times (0,\\infty)$, as $t\\to\\infty$. We will construct finite blow-up points solution in bounded cylindrical domain with appropriate lateral boundary value such that the finite blow-up points solution will oscillate between two given harmonic functions as $t\\to\\infty$. We will also prove the existence of the minimal solution of $u_t=\\Delta u^m$ in $\\hat{\\Omega}\\times (0,\\infty)$, $u(x,0)=u_0(x)$ in $\\hat{\\Omega}$, $u(a_i,t)=\\infty\\quad\\forall t>0, i=1,2\\dots,i_0$ and $u=\\infty$ on $\\partial{\\Omega}\\times (0,\\infty)$.", "revisions": [ { "version": "v1", "updated": "2022-08-29T12:58:32.000Z" } ], "analyses": { "subjects": [ "35K65", "35B51", "35B40" ], "keywords": [ "fast diffusion equation", "asymptotic behaviour", "construct finite blow-up points solution", "appropriate lateral boundary value" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }