arXiv Analytics

Sign in

arXiv:2206.11237 [math.FA]AbstractReferencesReviewsResources

BSE-properties of Vector-valued group algebras

Ali Rejali, Mitra Amiri

Published 2022-06-22Version 1

Let $ \mathcal{A} $ be a commutative and semisimple Banach algebra with identity norm one and $ G $ be an abelian locally compact Hausdorff group. In this paper, we study BSE-Property for $L^1(G,\mathcal A)$ and show that $L^1(G,\mathcal A)$ is a BSE algebra if and only if $\mathcal A$ is so.

Comments: arXiv admin note: text overlap with arXiv:2206.07123
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1808.01823 [math.FA] (Published 2018-08-06)
Rank in Banach Algebras: A Generalized Cayley-Hamilton Theorem
arXiv:1808.03052 [math.FA] (Published 2018-08-09)
Finite Spectra and Quasinilpotent Equivalence in Banach Algebras
arXiv:1808.06335 [math.FA] (Published 2018-08-20)
Commutators, Commutativity and Dimension in the Socle of a Banach Algebra: A generalized Wedderburn-Artin and Shoda's Theorem