{ "id": "2204.04311", "version": "v1", "published": "2022-04-08T22:08:18.000Z", "updated": "2022-04-08T22:08:18.000Z", "title": "On the generation of simple groups by Sylow subgroups", "authors": [ "Timothy C. Burness", "Robert M. Guralnick" ], "comment": "17 pages", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite simple group of Lie type and let $P$ be a Sylow $2$-subgroup of $G$. In this paper, we prove that for any nontrivial element $x \\in G$, there exists $g \\in G$ such that $G = \\langle P, x^g \\rangle$. By combining this result with recent work of Breuer and Guralnick, we deduce that if $G$ is a finite nonabelian simple group and $r$ is any prime divisor of $|G|$, then $G$ is generated by a Sylow $2$-subgroup and a Sylow $r$-subgroup.", "revisions": [ { "version": "v1", "updated": "2022-04-08T22:08:18.000Z" } ], "analyses": { "keywords": [ "sylow subgroups", "finite nonabelian simple group", "generation", "finite simple group", "nontrivial element" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }