{ "id": "2203.14534", "version": "v1", "published": "2022-03-28T07:18:29.000Z", "updated": "2022-03-28T07:18:29.000Z", "title": "A Combinatorial Proof of a generalization of a Theorem of Frobenius", "authors": [ "Supravat Sarkar" ], "comment": "Accepted for publication in \"The Mathematics Student\" Journal", "categories": [ "math.GR" ], "abstract": "In this article, we shall generalize a theorem due to Frobenius in group theory, which asserts that if $p$ is a prime and $p^{r}$ divides the order of a finite group, then the number of subgroups of order $p^{r}$ is $\\equiv$ 1(mod $p$). Interestingly, our proof is purely combinatorial and does not use much group theory.", "revisions": [ { "version": "v1", "updated": "2022-03-28T07:18:29.000Z" } ], "analyses": { "keywords": [ "combinatorial proof", "generalization", "group theory", "finite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }