{ "id": "2110.14640", "version": "v2", "published": "2021-10-27T16:37:24.000Z", "updated": "2022-03-02T00:05:38.000Z", "title": "System with weights and with critical Sobolev exponent", "authors": [ "Asma Benhamida", "Rejeb Hadiji" ], "categories": [ "math.AP" ], "abstract": "In this paper, we investigate the minimization problem: $$ \\inf_{ \\displaystyle{\\begin{array}{lll} u \\in H_0^1(\\Omega), v \\in H_0^1(\\Omega),\\\\ \\quad \\| u \\|_{L^{q}} =1, \\quad \\| v \\|_{L^{q}} = 1 \\end{array}}} \\left[ \\frac{1}{2} \\int_{\\Omega} a(x) \\vert \\nabla u \\vert^2dx + \\displaystyle{ \\frac{1}{2} \\int_{\\Omega} b(x) \\vert \\nabla v \\vert^2dx } - \\lambda \\displaystyle{\\int_{\\Omega} uv dx} \\right] $$ with $q=\\frac{2N}{N-2}$, $ N \\geq 4$, $a$ and $ b $ are two continuous positive weights. We show the existence of solutions of the previous minimizing problem under some conditions on $a$, $b$, the dimension of space and the parameter $\\lambda$.", "revisions": [ { "version": "v2", "updated": "2022-03-02T00:05:38.000Z" } ], "analyses": { "subjects": [ "35A01", "35A15", "35J57", "35J62" ], "keywords": [ "critical sobolev exponent", "minimization problem", "continuous positive weights", "minimizing problem", "conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }