{ "id": "2109.06291", "version": "v1", "published": "2021-09-13T20:00:59.000Z", "updated": "2021-09-13T20:00:59.000Z", "title": "The Hardy--Littlewood--Chowla conjecture in the presence of a Siegel zero", "authors": [ "Terence Tao", "Joni Teräväinen" ], "comment": "53 pages, no figures", "categories": [ "math.NT" ], "abstract": "Assuming that Siegel zeros exist, we prove a hybrid version of the Chowla and Hardy--Littlewood prime tuples conjectures. Thus, for an infinite sequence of natural numbers $x$, and any distinct integers $h_1,\\dots,h_k,h'_1,\\dots,h'_\\ell$, we establish an asymptotic formula for $$\\sum_{n\\leq x}\\Lambda(n+h_1)\\cdots \\Lambda(n+h_k)\\lambda(n+h_{1}')\\cdots \\lambda(n+h_{\\ell}')$$ for any $0\\leq k\\leq 2$ and $\\ell \\geq 0$. Specializing to either $\\ell=0$ or $k=0$, we deduce the previously known results on the Hardy--Littlewood (or twin primes) conjecture and the Chowla conjecture under the existence of Siegel zeros, due to Heath-Brown and Chinis, respectively. The range of validity of our asymptotic formula is wider than in these previous results.", "revisions": [ { "version": "v1", "updated": "2021-09-13T20:00:59.000Z" } ], "analyses": { "subjects": [ "11N37", "11N36" ], "keywords": [ "siegel zero", "hardy-littlewood-chowla conjecture", "hardy-littlewood prime tuples conjectures", "asymptotic formula", "infinite sequence" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable" } } }