{ "id": "2109.02021", "version": "v1", "published": "2021-09-05T08:16:05.000Z", "updated": "2021-09-05T08:16:05.000Z", "title": "The Terwilliger algebra of the halved cube", "authors": [ "Chia-Yi Wen", "Hau-Wen Huang" ], "categories": [ "math.CO", "math.RT" ], "abstract": "Let $D\\geq 3$ denote an integer. For any $x\\in \\mathbb F_2^D$ let $w(x)$ denote the Hamming weight of $x$. Let $X$ denote the subspace of $\\mathbb F_2^D$ consisting of all $x\\in \\mathbb F_2^D$ with even $w(x)$. The $D$-dimensional halved cube $\\frac{1}{2}H(D,2)$ is a finite simple connected graph with vertex set $X$ and $x,y\\in X$ are adjacent if and only if $w(x-y)=2$. Fix a vertex $x\\in X$. The Terwilliger algebra $\\mathcal T=\\mathcal T(x)$ of $\\frac{1}{2}H(D,2)$ with respect to $x$ is the subalgebra of ${\\rm Mat}_X(\\mathbb C)$ generated by the adjacency matrix $A$ and the dual adjacency matrix $A^*=A^*(x)$ where $A^*$ is a diagonal matrix with $$ A^*_{yy}=D-2w(x-y) \\qquad \\hbox{for all $y\\in X$}. $$ In this paper we decompose the standard $\\mathcal T$-module into a direct sum of irreducible $\\mathcal T$-modules.", "revisions": [ { "version": "v1", "updated": "2021-09-05T08:16:05.000Z" } ], "analyses": { "subjects": [ "05E30", "16D70", "33D45" ], "keywords": [ "terwilliger algebra", "dual adjacency matrix", "finite simple connected graph", "dimensional halved cube", "direct sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }