{ "id": "2108.12577", "version": "v1", "published": "2021-08-28T05:16:38.000Z", "updated": "2021-08-28T05:16:38.000Z", "title": "Generic Newton polygons for $L$-functions of $(A,B)$-exponential sums", "authors": [ "Liping Yang", "Hao Zhang" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we consider the following $(A, B)$-polynomial $f$ over finite field: $$f(x_0,x_1,\\cdots,x_n)=x_0^Ah(x_1,\\cdots,x_n)+g(x_1,\\cdots,x_n)+P_B(1/x_0),$$ where $h$ is a Deligne polynomial of degree $d$, $g$ is an arbitrary polynomial of degree $< dB/(A+B)$ and $P_B(y)$ is a one-variable polynomial of degree $\\le B$. Let $\\Delta$ be the Newton polyhedron of $f$ at infinity. We show that $\\Delta$ is generically ordinary if $p\\equiv 1 \\mod D$, where $D$ is a constant only determined by $\\Delta$. In other words, we prove that the Adolphson--Sperber conjecture is true for $\\Delta$.", "revisions": [ { "version": "v1", "updated": "2021-08-28T05:16:38.000Z" } ], "analyses": { "subjects": [ "11T06", "11T23", "11S40" ], "keywords": [ "generic newton polygons", "exponential sums", "newton polyhedron", "finite field", "arbitrary polynomial" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }