{ "id": "2108.02301", "version": "v1", "published": "2021-08-04T22:17:34.000Z", "updated": "2021-08-04T22:17:34.000Z", "title": "Extreme values of derivatives of the Riemann zeta function", "authors": [ "Daodao Yang" ], "comment": "27 pages", "categories": [ "math.NT" ], "abstract": "It is proved that if $T$ is sufficiently large, then uniformly for all positive integers $\\ell \\leqslant (\\log T) / (\\log_2 T)$, we have \\begin{equation*} \\max_{T\\leqslant t\\leqslant 2T}\\left|\\zeta^{(\\ell)}\\Big(1+it\\Big)\\right| \\geqslant e^{\\gamma}\\cdot \\ell^{\\ell}\\cdot (\\ell+1)^{ -(\\ell+1)}\\cdot\\Big(\\log_2 T - \\log_3 T + O(1)\\Big)^{\\ell+1} \\,, \\end{equation*} where $\\gamma$ is the Euler constant. We also establish lower bounds for maximum of $\\big|\\zeta^{(\\ell)}(\\sigma+it)\\big|$ when $\\ell \\in \\mathbb N $ and $\\sigma \\in [1/2, \\,1)$ are fixed.", "revisions": [ { "version": "v1", "updated": "2021-08-04T22:17:34.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "extreme values", "derivatives", "euler constant", "establish lower bounds" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }