{ "id": "2107.08587", "version": "v1", "published": "2021-07-19T02:41:25.000Z", "updated": "2021-07-19T02:41:25.000Z", "title": "Minimal relative units of the cyclotomic $\\mathbb Z_2$-extension", "authors": [ "Tomokazu Kashio", "Hyuga Yoshizaki" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "We study minimal relative units of each layer of the $\\mathbb Z_2$-extension over $\\mathbb Q$. Here ``minimal'' means that $\\mathrm{Tr}\\, \\epsilon^2$ takes the minimum value other than $\\epsilon=\\pm 1$. We formulate a conjecture on minimal relative units and prove some partial results. We also study a relation to Weber's class number problem for low layers.", "revisions": [ { "version": "v1", "updated": "2021-07-19T02:41:25.000Z" } ], "analyses": { "subjects": [ "11R27", "11R29", "11R18", "11Y40" ], "keywords": [ "cyclotomic", "webers class number problem", "study minimal relative units", "minimum value", "low layers" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }