{ "id": "2107.06248", "version": "v1", "published": "2021-07-13T17:11:06.000Z", "updated": "2021-07-13T17:11:06.000Z", "title": "Abelian sections of the symmetric groups with respect to their index", "authors": [ "Luca Sabatini" ], "comment": "6 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "We show the existence of an absolute constant $\\alpha>0$ such that, for every $k \\geq 3$, $G:= \\mathop{\\mathrm{Sym}}(k)$, and for every $H \\leqslant G$ of index at least $3$, one has $|H/H'| \\leq \\exp \\left( \\frac{\\alpha \\cdot \\log|G:H|}{\\log \\log |G:H|} \\right)$. This inequality is the best possible for the symmetric groups, and we conjecture that it is the best possible for every family of arbitrarily large finite groups.", "revisions": [ { "version": "v1", "updated": "2021-07-13T17:11:06.000Z" } ], "analyses": { "subjects": [ "20B30", "20B35", "20F69" ], "keywords": [ "symmetric groups", "abelian sections", "arbitrarily large finite groups", "absolute constant", "conjecture" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }