{ "id": "2106.04036", "version": "v1", "published": "2021-06-08T01:00:46.000Z", "updated": "2021-06-08T01:00:46.000Z", "title": "Ratio sets of random sets", "authors": [ "Javier Cilleruelo", "Jorge Guijarro-Ordonez" ], "journal": "The Ramanujan Journal, 43(2), 2017", "categories": [ "math.CO", "math.NT" ], "abstract": "We study the typical behavior of the size of the ratio set $A/A$ for a random subset $A\\subset \\{1,\\dots , n\\}$. For example, we prove that $|A/A|\\sim \\frac{2\\text{Li}_2(3/4)}{\\pi^2}n^2 $ for almost all subsets $A \\subset\\{1,\\dots ,n\\}$. We also prove that the proportion of visible lattice points in the lattice $A_1\\times\\cdots \\times A_d$, where $A_i$ is taken at random in $[1,n]$ with $\\mathbb P(m\\in A_i)=\\alpha_i$ for any $m\\in [1,n]$, is asymptotic to a constant $\\mu(\\alpha_1,\\dots,\\alpha_d)$ that involves the polylogarithm of order $d$.", "revisions": [ { "version": "v1", "updated": "2021-06-08T01:00:46.000Z" } ], "analyses": { "keywords": [ "ratio set", "random sets", "random subset", "visible lattice points", "typical behavior" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }