{ "id": "2103.12600", "version": "v1", "published": "2021-03-23T14:54:18.000Z", "updated": "2021-03-23T14:54:18.000Z", "title": "Multiplicity of solutions for fractional $q(.)$-Laplacian equations", "authors": [ "Abita Rahmoune", "Umberto Biccari" ], "categories": [ "math.AP" ], "abstract": "In this paper, we deal with the following elliptic type problem $$ \\begin{cases} (-\\Delta)_{q(.)}^{s(.)}u + \\lambda Vu = \\alpha \\left\\vert u\\right\\vert^{p(.)-2}u+\\beta \\left\\vert u\\right\\vert^{k(.)-2}u & \\text{ in }\\Omega, \\\\[7pt] u =0 & \\text{ in }\\mathbb{R}^{n}\\backslash \\Omega , \\end{cases} $$ where $q(.):\\overline{\\Omega}\\times \\overline{\\Omega}\\rightarrow \\mathbb{R}$ is a measurable function and $s(.):\\mathbb{R}^n\\times \\mathbb{R}^n\\rightarrow (0,1)$ is a continuous function, $n>q(x,y)s(x,y)$ for all $(x,y)\\in \\Omega \\times \\Omega $, $(-\\Delta)_{q(.)}^{s(.)}$ is the variable-order fractional Laplace operator, and $V$ is a positive continuous potential. Using the mountain pass category theorem and Ekeland's variational principle, we obtain the existence of a least two different solutions for all $\\lambda>0$. Besides, we prove that these solutions converge to two of the infinitely many solutions of a limit problem as $\\lambda \\rightarrow +\\infty $.", "revisions": [ { "version": "v1", "updated": "2021-03-23T14:54:18.000Z" } ], "analyses": { "keywords": [ "laplacian equations", "multiplicity", "variable-order fractional laplace operator", "mountain pass category theorem", "ekelands variational principle" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }