{ "id": "2103.05413", "version": "v1", "published": "2021-03-09T13:24:32.000Z", "updated": "2021-03-09T13:24:32.000Z", "title": "Sign changes of the partial sums of a random multiplicative function", "authors": [ "Marco Aymone", "Winston Heap", "Jing Zhao" ], "comment": "6 pages", "categories": [ "math.NT", "math.PR" ], "abstract": "We provide a simple proof that the partial sums $\\sum_{n\\leq x}f(n)$ of a Rademacher random multiplicative function $f$ change sign for an infinite number of $x>0$, almost surely.", "revisions": [ { "version": "v1", "updated": "2021-03-09T13:24:32.000Z" } ], "analyses": { "keywords": [ "partial sums", "sign changes", "rademacher random multiplicative function", "simple proof", "change sign" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }