{ "id": "2102.07977", "version": "v1", "published": "2021-02-16T07:00:22.000Z", "updated": "2021-02-16T07:00:22.000Z", "title": "On the Diophantine equation $cx^2+p^{2m}=4y^n$", "authors": [ "Kalyan Chakraborty", "Azizul Hoque", "Kotyada Srinivas" ], "comment": "12 pages. To appear in `Results in Mathematics'", "categories": [ "math.NT" ], "abstract": "Let $c$ be a square-free positive integer and $p$ a prime satisfying $p\\nmid c$. Let $h(-c)$ denote the class number of the imaginary quadratic field $\\mathbb{Q}(\\sqrt{-c})$. In this paper, we consider the Diophantine equation $$cx^2+p^{2m}=4y^n,~~x,y\\geq 1, m\\geq 0, n\\geq 3, \\gcd(x,y)=1, \\gcd(n,2h(-c))=1,$$ and we describe all its integer solutions. Our main tool here is the prominent result of Bilu, Hanrot and Voutier on existence of primitive divisors in Lehmer sequences.", "revisions": [ { "version": "v1", "updated": "2021-02-16T07:00:22.000Z" } ], "analyses": { "subjects": [ "11D61", "11D41", "11Y50" ], "keywords": [ "diophantine equation", "imaginary quadratic field", "class number", "square-free positive integer", "integer solutions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }