{ "id": "2102.04598", "version": "v1", "published": "2021-02-09T01:35:40.000Z", "updated": "2021-02-09T01:35:40.000Z", "title": "Isolated subgroups of finite abelian groups", "authors": [ "Marius Tărnăuceanu" ], "categories": [ "math.GR" ], "abstract": "We say that a subgroup $H$ is isolated in a group $G$ if for every $x\\in G$ we have either $x\\in H$ or $\\langle x\\rangle\\cap H=1$. In this short note, we describe the set of isolated subgroups of a finite abelian group. The technique used is based on an interesting connection between isolated subgroups and the function sum of element orders of a finite group.", "revisions": [ { "version": "v1", "updated": "2021-02-09T01:35:40.000Z" } ], "analyses": { "keywords": [ "finite abelian group", "isolated subgroups", "function sum", "finite group", "element orders" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }