{ "id": "2102.00448", "version": "v1", "published": "2021-01-31T13:25:39.000Z", "updated": "2021-01-31T13:25:39.000Z", "title": "Orbits of Sylow subgroups of finite permutation groups", "authors": [ "John Bamberg", "Alexander Bors", "Alice Devillers", "Michael Giudici", "Cheryl E. Praeger", "Gordon F. Royle" ], "categories": [ "math.GR" ], "abstract": "We say that a finite group $G$ acting on a set $\\Omega$ has Property $(*)_p$ for a prime $p$ if $P_\\omega$ is a Sylow $p$-subgroup of $G_\\omega$ for all $\\omega\\in\\Omega$ and Sylow $p$-subgroups $P$ of $G$. Property $(*)_p$ arose in the recent work of Tornier (2018) on local Sylow $p$-subgroups of Burger-Mozes groups, and he determined the values of $p$ for which the alternating group $A_n$ and symmetric group $S_n$ acting on $n$ points has Property $(*)_p$. In this paper, we extend this result to finite $2$-transitive groups and we give a structural characterisation result for the finite primitive groups that satisfy Property $(*)_p$ for an allowable prime $p$.", "revisions": [ { "version": "v1", "updated": "2021-01-31T13:25:39.000Z" } ], "analyses": { "subjects": [ "20B05", "20B15" ], "keywords": [ "finite permutation groups", "sylow subgroups", "structural characterisation result", "burger-mozes groups", "finite primitive groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }