{ "id": "2101.11039", "version": "v1", "published": "2021-01-26T19:20:50.000Z", "updated": "2021-01-26T19:20:50.000Z", "title": "The $(l,r)$-Stirling numbers: a combinatorial approach", "authors": [ "Hacène Belbachir", "Yahia Djemmada" ], "categories": [ "math.CO", "math.NT" ], "abstract": "This work deals with a new generalization of $r$-Stirling numbers using $l$-tuple of permutations and partitions called $(l,r)$-Stirling numbers of both kinds. We study various properties of these numbers using combinatorial interpretations and symmetric functions. Also, we give a limit representation of the multiple zeta function using $(l,r)$-Stirling of the first kind.", "revisions": [ { "version": "v1", "updated": "2021-01-26T19:20:50.000Z" } ], "analyses": { "subjects": [ "11B73", "11B83", "05A05", "05A18", "05E05" ], "keywords": [ "stirling numbers", "combinatorial approach", "multiple zeta function", "work deals", "limit representation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }