{ "id": "2101.10740", "version": "v1", "published": "2021-01-26T12:18:50.000Z", "updated": "2021-01-26T12:18:50.000Z", "title": "Counterexamples to inverse problems for the wave equation", "authors": [ "Tony Liimatainen", "Lauri Oksanen" ], "comment": "12", "categories": [ "math.AP", "math.DG" ], "abstract": "We construct counterexamples to inverse problems for the wave operator on domains in $\\mathbb{R}^{n+1}$, $n \\ge 2$, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On $\\mathbb{R}^{n+1}$ the metrics are conformal to the Minkowski metric.", "revisions": [ { "version": "v1", "updated": "2021-01-26T12:18:50.000Z" } ], "analyses": { "subjects": [ "35R30", "35L05", "58J45" ], "keywords": [ "inverse problems", "wave equation", "lorentzian metrics giving counterexamples", "non-isometric lorentzian metrics", "partial data measurements" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }