{ "id": "2101.05270", "version": "v1", "published": "2021-01-13T18:59:51.000Z", "updated": "2021-01-13T18:59:51.000Z", "title": "Superintegrable systems in non-Euclidean plane: hidden symmetries leading to linearity", "authors": [ "G. Gubbiotti", "M. C. Nucci" ], "categories": [ "math-ph", "math.MP" ], "abstract": "Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [A. Ballesteros, A. Enciso, F.J. Herranz and O. Ragnisco, Class. Quantum Grav. 25, 165005 (2008)], the Taub-NUT system [A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, and D. Riglioni, SIGMA 7, 048 (2011)], and all the seventeen superintegrable systems for the four types of Darboux spaces as determined in [E.G. Kalnins, J.M. Kress, W. Miller, P. Winternitz, J. Math. Phys. 44, 5811--5848 (2003)].", "revisions": [ { "version": "v1", "updated": "2021-01-13T18:59:51.000Z" } ], "analyses": { "keywords": [ "superintegrable systems", "non-euclidean plane", "two-dimensional non-euclidean spaces", "darboux spaces", "possess hidden symmetries leading" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }